Academic Council Meeting No. and Date : July 06, 2023Agenda Number : 2Resolution Number : 30, 31/4.4 & 4.9

Vidya Prasarak Mandal's

B. N. Bandodkar College of Science (Autonomous), Thane

Syllabus for

Programme : Bachelor of Science Specific Programme : Microbiology

[T.Y.B.Sc. (Microbiology)]

Revised under Autonomy

From academic year 2023 - 2024

This page is intentionally left blank

PREAMBLE

In continuation with syllabus reframing for the first and the second year Microbiology course, the T.Y.B.Sc. syllabus is being revised to be implemented from the year 2023-2024.

In order to impart latest advances in the subject, some of the modules of the earlier syllabus have been upgraded, while some new modules have been added to the syllabus.

The syllabus encompasses basic knowledge in various branches of Microbiology such as Microbial Genetics, Molecular Biology, Virology, Medical Microbiology, Immunology, Microbial Biochemistry and Industrial Microbiology. It also aims to make students aware about interdisciplinary sciences such as Bioinformatics, Intellectual property rights.

Students would be able to gain skill of scientific writing and be made aware about plagiarism and its impact on research fields.

The approach towards designing this syllabus has been to retain the classic concepts of Microbiology as well as include the latest discoveries in Microbiology and related fields.

Eligibility: Learner who has cleared F. Y. B.Sc. (Semester1 and 2) or S. Y. B.Sc. (semester 3 and 4)

Duration: 1 year

Mode of Conduct: Lectures and Laboratory Practical

Program Specific Outcome: Learners would be able to study basis of microbial world by knowing cell structure and functions, biochemistry, genetics, appreciate microbial diversity. Learners would be able to apply knowledge to make positive use of microbial systems for betterment of community and for sustainable development.

VPM's B.N. Bandodkar College of Science (Autonomous), Thane T.Y.B.Sc. (Microbiology) Structure of Programme

Course Code	Course Title	No. of lectures	Credits
BNBUSMB5T1	Microbial genetics	60	2.5
BNBUSMB5T2	Medical Microbiology & Immunology: Part - I	60	2.5
BNBUSMB5T3	Microbial biochemistry: I	60	2.5
BNBUSMB5T4	Bioprocess technology: I	60	2.5
BNBUSMB5T5	Applied Environmental Science		2
BNBUSMB5P1	Practical Based on BNBUSMB5T1 & BNBUSMB5T2		3
BNBUSMB5P2	Practical Based on BNBUSMB5T3 & BNBUSMB5T4		3
BNBUSMB5P3	Practical based on: BNBUSMB5T5		2
Total			16

Course Code	Course Title	No. of lectures	Credits
BNBUSMB6T1	rDNA Technology, Bioinformatics & Virology	60	2.5
BNBUSMB6T2	Medical Microbiology & Immunology: Part - II	60	2.5
BNBUSMB6T3	Microbial biochemistry: II	60	2.5
BNBUSMB6T4	Bioprocess technology: II	60	2.5
BNBUSMB6T5	Environmental Management		2
BNBUSMB6P1	Practical Based on BNBUSMB6T1 & BNBUSMB6T2		3
BNBUSMB6P2	Practical Based on BNBUSMB6T3 & BNBUSMB6T4		3
BNBUSMB6P3	Practical based on: BNBUSMB6T5		2
Total			16

Semester V

Course Code BNBUSMB5T1	Course Title Microbial Genetics	Credits 2.5	No. of lectures
1.und and R 2.enli 3.exp	mes: Learners will be able to: erstand structure and properties of different types of RNA, NA splicing. st types of mutation, their cause, effects, and DNA repair lain functioning of operons and other regulatory mechanisms porate on different gene transfer mechanisms in bacteria		of RNA
Unit I: Translation	 1.1 Nature of Genetic Code: a. Overlapping Vs non- overlapping code. 1L b. Revision of genetic code; concept of reading frame 1.2 Transfer RNA, structure of tRNA, tRNA genes 1.3 Translation: Process of Protein Synthesis (Initiati Elongation, Translocation, Proofreading on the riboso Termination). 4L 1.4 From an RNA World to a Protein World: 3L a. Ribozyme in protein synthesis. b. The Wobble Hypothesis. c. The significance of GTP in protein synthesis. 1.5 Protein synthesis in eukaryotes. 1L 1.6 Inhibitors and modifiers of protein synthesis in prokaryotes and eukaryotes. 1L 1.7 Protein sorting in the cell. 1L 	. 3L on, me,	15
Unit II: Mutation and repair	 2.1. Mutations 10L Definition and Types of Mutations. Mutation rate and mutation frequency. Types of Point Mutations: transition, transversion nonsense, neutral, silent, frameshift, leaky mutation Reverse Mutations and Suppressor Mutations Variation in the Genetic Code: Nonsense Suppression Spontaneous Vs Induced mutations; Mutage Mutagens (Examples of Physical, Chemical and Biological mutator genes and mutational hotspots, Ames test loss- of- function and gain- of -function mutation. Conditionally expressed mutants. 2.2 DNA Repair: 5L Photo-reversal, Base Excision Repair, Nucleotid Repair, Mismatch Repair, SOS Repair and Rec Repair. 	s. s: Induced on. enesis and Mutagens); le Excision	15
Unit III: Regulation of gene expression	 3.1 Introduction: (02) Aspects of gene regulation similar and different in bacta eukaryotes: Genes and regulatory elements, Levels of g regulation, DNA binding proteins 		15

	 3.2 Control of transcription in bacteria: Operon structure, Negative and positive control- Inducible and repressible operons 3.3 Lac operon: Mutations and regulation (04) 3.4 Trp operon (02) 3.5 Regulation of lytic and lysogenic pathway of lambda phage (03) 3.6 Regulation of Sigma factor during growth: Sigma factor control by RNA thermometers and proteolysis (01) 	
	3.7 Regulatory RNAs: Intro, Mechanism of sRNA function, sRNA molecules expand the reach of regulatory proteins (02) Riboswitches: i. In synthesis of Vitamin B12 ii. As Ribozymes (01)	
Unit IV: Genetic exchange	Genetic analysis of Bacteria (01) Gene transfer mechanisms in bacteria 4.1 Transformation (03) a. Introduction and History b.Types of transformation in prokaryotes—Natural transformationin <i>Streptococcus pneumoniae, Haemophilus influenzae</i> , and <i>Bacillus subtilis</i> . c. Mapping of bacterial genes using transformation. d. Problems based on transformation. 4.2 Conjugation (05) Discovery of conjugation in bacteria a. Properties of F plasmid/Sex factor b. The conjugation machinery c. Hfr strains, their formation and mechanism of conjugation d. F' factor, origin and behavior of F' strains, sexduction e. Mapping of bacterial genes using conjugation (Wolman and Jacob experiment) and Problems based on conjugation 4.3 Transduction (03) a. Introduction and discovery b. Generalized transduction c. Use of Generalized transduction for mapping genes d. Specialized transduction 4.4. Recombination in bacteria (03) a. General/Homologous recombination b. Molecular basis of recombination c. Holliday model of recombination e. Site —specific recombination e. Site —specific recombination	15

Course Code	Course Title Credits	No. of
BNBUSMB5T2	Medical Microbiology & Immunology: Part - I2.5	lectures
 Understand of the dise Comment diseases Conceptual 	omes: Learners will be able to ad virulence factors and correlate them with the pathogenesis and clinical f ease on the mode of transmission and modes of prophylaxis of the infectious alize immunogenicity and antigenicity iological significance of complement, cytokines, MHC, APCs	eatures
Unit I: Respiratory and skin infections	 Study of infectious diseases of the (wrt. Cultural Characteristics of the etiological agent, pathogenesis; clinical features, laboratory diagnosis, treatment and prevention) 1. Study of Respiratory tract infection: (8) a. <i>S. pyogenes</i> infections b. Influenza c. Tuberculosis d. Pneumonia caused by <i>K. pneumoniae</i> 2. Study of skin infections (7) a. Pyogenic skin infections caused by <i>Pseudomonas</i> and <i>S. aureus</i> b. Leprosy c. Fungal infections- Candidiasis d. Viral Infections- Herpes simplex 	15
Unit II: Gastro- intestinal and urinary infections	 Study of infectious diseases (w.r.t. cultural characteristics of the etiological agent, pathogenesis; clinical features, laboratory diagnosis, treatment and prevention) 1. Study of gastrointestinal tract infections(12) a. Infections due to Enteropathogenic <i>E.coli</i> strains b. Enteric fever- <i>Salmonella</i> c. Shigellosis d. Rotavirus diarrhea e. Dysentery due to <i>Entamoeba histolytica</i> 2. Study of urinary tract infections (3) 	15
Unit III: Immunogen, immunoglobul in and their interactions	 3.1 Antigen and immunogen : Concept Factors affecting immunogenicity of the molecule (1) 3.2 Haptens and adjuvants (1) 3.3 Immunoglobulin : Antigenic determinants on immunoglobulins (isotypes, allotypes, idiotypes) (1) Immunoglobulin Superfamily (1) 3.4 Monoclonal antibodies significance, production, applications (3) 3.5 Antigen-antibody reaction: (8) a. Properties, types b. Precipitation: SRID, Double immunodiffusion, immuno- electrophoresis, rocket immune-electrophoresis c. Agglutination: bacterial, passive, hemagglutination, HAI 	15

	 d. RIA e. ELISA: types f. Immunofluorescence: direct and indirect g. Western blotting h. Flow cytometry and FACS Complement: (3) Activation pathways : Classical, alternative, lectin dependant 	
Unit IV: Immune components	 Biological functions and regulation (tabulated) Cytokines: (2) Concept, properties and attributes, receptors, biological functions MHC: (3) Introduction, polymorphism and polygenism, Classes, Basic structure, functional significance of MHC class I and class II Antigen presenting cells : (3) Types, role of APC's in endogenous and exogenous antigen processing and presentation Molecules interacting with processed antigenic peptide TCR and BCR : T Cell Receptor-structure (alpha-beta, gamma-delta TCR) TCR-CD₃ complex - structure and functions. 	15

Course Code BNBUSMB5T3	Course Title Microbial Biochemistry: I	Credits 2.5	No. of lecture s
 Com betw Expl unde Unde 4. Appl 	mes: Learners will be able to: prehend different types of solute transport process and the di- een them. ain the electron transport chains in prokaryotes and mitochom rstand the mechanism of ATP synthesis. erstand various pathways for the breakdown of carbohydrates y the concepts of energetics and catabolism in biodegrada rates. 1. Composition and architecture of membrane	dria and	S
Unit I: Biological Membrane transport	 a. Lipids and properties of phospholipid membranes b. Integral & amp; peripheral proteins c. Aquaporins d. Mechanosensitive channels 2. Methods of studying solute transport a. Use of whole cell b. Liposomes c. Proteoliposomes 3. Solute transport across membrane a. Passive transport and facilitated diffusion by membrane p b. Co-transport across plasma membrane - (Uniport, Antipo Symport) c. Active transport & amp; electrochemical gradient d. Ion gradient provides energy for secondary active transport e. Lactose transport (only Na-K ATPase) g. Shock sensitive system – Role of binding proteins h. Maltose uptake (Diagram and description) i. Histidine uptake (Diagram and description) j. Phosphotransferase system k. Schematic representation of various membrane transport in bacteria. 	rt, ort	15
Unit II:	 Biochemical mechanism of generating ATP: a. Substrate-Level Phosphorylation, Oxidative Phosphorylation Photophosphorylation Electron transport chain 	-	15

	3. Prokaryotic ETC	
	a. Organization of electron carriers in bacteria	
	b. Generalized electron transport pathway in Bacteria	
	c. Different terminal oxidases	
	d. Branched bacterial ETC	
	e. Pattern of electron flow in <i>E. coli</i> - aerobic and anaerobic	
	4. ATP synthesis	
	a. Explanation of terms – Proton motive force, Proton pump,	
	Coupling sites, P:O ratio, Redox potential (definition of Standard	
	reduction potential)	
	b. Free energy released during electron transfer from NADH to O_2	
	c. Chemiosmotic theory (only explanation)	
	d. Structure & amp; function of Mitochondrial ATP synthase	
	e. Structure of bacterial ATP synthase	
	f. Mechanism by Rotational catalysis	
	g. Inhibitors of ETC, ATPase and uncouplers	
	5. Other modes of generation of electrochemical energy	
	a. ATP hydrolysis	
	b. Oxalate formate exchange	
	c. End product efflux, Definition, Lactate efflux	
	d. Bacteriorhodopsin: Definition, function as proton pump and	
	significance	
	6. Bioluminescence:	
	a. introduction, biochemistry	
	c. Schematic diagram	
	d. Significance	
	4.1 Fermentative pathways (with structures and enzymes)	
	4.1.1 Lactic acid fermentation	
	4.1.1.1 Homofermentation	
	4.1.1.2 Heterofermentation	
	4.1.2 Bifidum pathway	
	4.1.3 Alcohol fermentation	
	4.1.3.1 By ED pathway in bacteria	
	4.1.3.2 By EMP in yeasts	
Unit III:	4.2 Other modes of fermentation in microorganisms	
Fermentative	4.2.1 Mixed acid	
	4.2.2 Butanediol	15
Pathways & Anabolism of	4.2.3 Butyric acid	15
Carbohydrates	4.2.4 Acetone-Butanol	
Carbonyurates	4.2.5 Propionic acid (Acrylate and succinate propionate pathway)	
	4.3 Anabolism of Carbohydrates	
	4.3.1 General pattern of metabolism leading to synthesis of a cell from	
	glucose	
	4.3.2 Sugar nucleotides	
	4.3.3 Gluconeogenesis (only bacterial)	
	4.3.4 Biosynthesis of glycogen	
	4.3.5 Biosynthesis of Peptidoglycan	

Unit IV: Studying Metabolism & Catabolism of Carbohydrates	 1. Experimental Analysis of metabolism a. Goals of the study b. Levels of organization at which metabolism is studies c. Metabolic probes. d. Use of radioisotopes in biochemistry Pulse labeling Assay and study of radiorespirometry to differentiate EMP &ED e. Use of biochemical mutants f. Sequential induction 2. Catabolism of Carbohydrates a. Breakdown of polysaccharides: Glycogen, Starch, Cellulose b. Breakdown of oligosaccharides - Lactose, Maltose, Sucrose, Cellobiose. c. Utilization of monosaccharides - Fructose, Galactose d. Major pathways – (with structure and enzymes) Glycolysis (EMP) Pasteur effect HMP Pathway- Significance of the pathway ED pathway TCA cycle- Action of PDH, Significance of TCA Incomplete TCA in anaerobic bacteria Anaplerotic reactions Glyoxylate bypass 3. Amphibolic role of EMP; Amphibolic role of TCA cycle 4. Energetics of Glycolysis, TCA and ED pathway – Balance sheet only. Format as in Lehninger (2.5 ATP/NADH and 1.5 ATP / FADH2) (Based on this format make balance sheet for Glycolysis - Lactic acid and Alcohol fermentation and for ED pathway) 1 L 	15
--	---	----

Course Code BNBUSMB5T4	Course Title Bioprocess Technology: I	Credits 2.5	No. of lectures
 Desc Desc Discu Dem 	mes: Learners will be able to: ribe the basic design of bioreactors, composition of media, ar ribe methods of product recovery uss traditional fermentation processes like wine, vinegar etc. onstrate scientific writing and understand importance of Intel erty Rights		
Unit I: Upstream processing	 1.1 Basic design of a fermenter, sensor, and its types (4), Examples of fermenters - Stirred Tank Reactor, Air Li Photobioreactor (1) 1.2 Development of inoculum (2) 1.3 Fermentation media formulation (3) 1.4 Sterilization of medium: Batch Vs continuous sterilizat 1.5 Sterilization of fermenter, feeds (2) 1.6 Scale up and scale down of fermentation (1) 		15
Unit II: Downstream Processing	 2.1 Concept of Fermentation Product Recovery: Criteria is recovery process (1) 2.2 Removal of insoluble product (5): Biomass sepa fermentation media a. Foam Fractionation (Floatation) b. Precipitation c. Filtration, filter aids, plate frame, Pressure leaf, rotary vad d. Centrifugation - Cell aggregation and flocculation, (Bask Tubular bowl centrifuge & Decanter centrifuge) 2.3 Cell Disruption for intracellular products(2): Physico-methemical & biological methods 2.4 Extraction (2): Liquid-Liquid Extraction, Solvent extractory, Reversed Micelle Extraction, Supercritical Fluid E 2.5 Purification: (4) 2.5.1 Chromatography 2.5.2 Carbon decolorization 2.5.3 Removal of Volatile Products 2.5.4 Membrane processes (Ultra filtration, Reverse ost membranes) 2.5.5 Drying (Liquid Phase Moisture removal, Solid Phase Moisture remov	aration from cuum filters tet centrifuge, echanical and straction and Extraction	15
Unit III:	 4.1 Wine (3) Composition of grape juice Wine manufacturing principles and fermentation Malolactic fermentation Types of Wine 		15

	Aroma compounds of wine-types and examples (just enlist).			
	4.2 Industrial alcohol : Microorganism, Media, Fermentation, Product recovery (2)			
	4.3 Vinegar (acetic acid): Introduction, biosynthesis, production using generator, production using submerged fermenter, recovery. (2)			
	 4.4 Baker's yeast (2) Production of Baker's yeast: Yeast strain used, large-scale production, Fermentation process, harvesting the yeast, packing (compressed and active dry yeast). 4.5 Enzymes: 			
	Use of enzymes in industry (overview) and Production of enzymes. (3) Immobilization of enzymes : Introduction, methods, significance (2)			
	4.1 Research Methodology: Meaning of Research, Objectives &			
Unit IV: Research methodology, Scientific writing, IPR	 Motivation in Research, Types of Research, Research Approaches, Significance of Research (3) 4.2 Scientific writing: Process of Scientific writing, Introduction to scientific reports and writings, Types (Research article, review article, scientific communications, case study, scientific report) (3) 4.3 Collection of data: Collection of Primary Data; Observation Method, Interview Method, Collection of data through questionnaires / schedules, other methods of data collection, collection of secondary data, Selection of appropriate method for data collection, case study method (4) 4.4 Plagiarism: Introduction to Plagiarism, Examples of Plagiarism, Punishment of Scientific misconduct (1) 4.5 IPR: Introduction to IPR, Genesis of IPR (WIPO, GATT, TRIPs) (1) 4.6 Types of IP: Patent, copyrights, geographical indications, trademarks, trade secret, Industrial designs, Plant varieties protection act (1) 4.7 Patent: Patent Law, Criteria for patenting, Typical patenting procedure, provisional and complete specification, patentable and non-patentable items (2) 	15		

Course Code BNBUSMB5T5	Course Title Applied Environmental Science	Credits 2.5	No. of lectures
 Learning Outcomes: Learners will be able to: comprehend impact of the interrelationship between various components of the environ create critical and creative thinking during designing, manufacturing, utilization of cl products, which would reduce or eliminate the use or generation of hazardous substance discover and design products, operations or processes, which conserve the energy resoute summarize the knowledge of various laws and regulations regarding the environment. 			
Unit I Introduction to Environment and pollution	 environmental biology, environmental chemistry, energineering, environmental geology, enphysics, environmental management. 1.2 Components of environment; biotic and abiotic. Covarious segments of environment–atmosphere, lithosphere, biosphere (with respect to componinterrelationship). Types of pollution: 3 Water pollution: Pesticides and heavy metals. Air pollution: Challenges posed by present day pollutant 5 Others- Noise and nuclear pollution. Case Study of Than Creek, GOI-UNDP Sea Turtle project 	of science: nvironmental nvironmental mposition of hydrosphere, osition and ts. ne Lakes,	15
Unit II Green Chemistry and Sustainability	 2.1 The Twelve Principles of Green Chemistry. 2.2 Sustainable Development- Principlesand sustainable developments. 2.3 Goals of sustainable development. 2.4 Areas highlighted by Agenda 21. 2.5 Transition from Industrial economy to Green economy Biography of Vandana Shiva - environmental activist, M.K. relentless green activist, Green Revolution M.S.Swaminat 	7. Prasad: A	15
Unit III Alternate Energy Resources	 3.1 Renewable Energy-Definition and concept 3.2 Solar energy, wind energy, tidal energy, nuclear energy examples. 3.3 Biomass & bio-fuels, petro crops, Algal biofuels 3.4 Use of wastes: Water-based biomass, energy from waste waste Case study: Windmills & Wind Turbines in Maharashtra, Pa Aurangabad. 	with e & solid	15
Unit IV Environment al Education and Legislation	 4.1 Environmental education programmes in India. 4.2 Environmental organizations & agencies-CITES, EPA, I MAB. 4.3 Environmental laws in India: Wild life Protection Act, 1 Prevention & Control of Pollution Act, 1974, Air Preventi Control of Pollution Act, 1981, Environment Protection A Biological Diversity Act, 2002. (Shifted from Sem VI) Case study: Water Conflicts: Sharing of Cauvery water betw Karnataka and Tamil Nadu, Sharing of Godavari water Na Ahmednagar & Marathwada. 	972, Water on & .ct, 1986 & veen	15

Course Code BNBUSMB5P1	Course Title Practical Based on BNBUSMB5T1 & BNBUSMB5T2	Credits 3	No. of lectures
1.	UV survival curve – determination of exposure time leading reduction	to 90%	
2.	Isolation of mutants using UV mutagenesis		
3.	Gradient plate technique (dye resistant mutants)		
4.	Replica plate technique for selection & characterization mutants – auxotroph & antibiotic resistant	of	
5.	Isolation and detection of plasmid DNA.		
6.	Acid fast staining.		
7.	Identification of <i>Candida</i> species using the germ tube test ar on Chrom agar	nd growth	
8.	To determine SLO and SLS activity of <i>S</i> .pyogenes		
9.	Study of standard cultures <i>E. coli, Klebsiella spp., Proteuspp., Pseudomonas spp.,Salmonalla typhi, S. paratyphi A, S paratyphi B, Shigella spp., S .pyogenes, S. aureus</i> Identification of isolates obtained from pus, sputum, stool and urine by morphological,cultural and biochemical properties.		
10.	Enteropluri test : demonstration		
11.	Double immunodiffusion		
12.	Demonstration experiments – Widal Qalitative and quantita	tive	
13.	Antigen Preparation: O & H antigen preparation of Salmonella. Confirmation by slide agglutination		

Course Code BNBUSMB5P2	Course Title Practical Based on BNBUSMB5T3 & BNBUSMB5T4	Credits 3	No. of lectures
1.	Isolation and study of Bioluminescent organisms		
2.	Qualitative and Quantitative assay of Phosphatase		
3.	Isolation and detection of mitochondria		
4.	Study of oxidative and fermentative metabolism		
5.	Study of Homo – Hetero fermentations		
6.	Glucose detection by GOD/POD		
7.	Alcohol Fermentation Preparation and standardization of yeast inoculums for alcohol fermentation Laboratory Alcohol fermentation using jaggery medium, calcu- efficiency of fermentation	lation of	
8.	Determine the alcohol tolerance for yeast.		
9.	Determine the sugar tolerance for yeast.		
10.	Chemical estimation of sugar by Cole's ferricyanide method		
11.	Chemical estimation of alcohol		
12.	immobilization of yeast cells for invertase activity - making beads, Determination of activity and count by hemocytometer a viable count		
13.	scientific report writing (assignment)		

Course Code BNBUSMB5P3	Course Title Practical based on: BNBUSMB5T5	Credits 3	No. of lectures
1. Study of 1	Physico-chemical properties of sewage/ effluent water: turbid	ity, dissolv	ved oxygen,
salinity &	total hardness.		
2. Determina	tion of pH and temperature of water sample.		
3. Measurem	ent of intensity of light by Lux meter.		
4. Determina	tion of Air Pollution tolerance index: Ascorbic acid content, To	tal Chloro	phyll, Ph of
leaf extract	, relative water content of leaf.		
5. Collection	and preservation of phytoplankton and zooplankton samples	from diff	ferent water
bodies (riv	er, pond, lake etc.)		
6. Study of ai	r micro flora.		
7. Study of	indoor plants for reduction of pollution (Adiantum, Od	cimum sa	nctum, Ivy,
Chlorophy	tum, Monstera, Philodendron, Dracena, Chrysanthemum, Gerbe	ra).	
8. Study of p	roduct derived by application of green chemistry (Laundry dete	rgents, Po	lylactic acid
packaging,	Green paints, Pharmaceutical drugs- Ibuprofen)		
9. Study of a	oplication of alternative energy resources (Solar panel, Biogas p	lant, Photo	ovoltaic cell,
Windmill,	Nuclear reactor, Harnessing tidal energy)		
10. Photograpl	nic documentation of environment related issues/ conservation	Submissio	on of soft &
hard copy	of 5 original photographs taken by the learner (details required)		
11. Visit to an	y industry/laboratory/plant/national park and submission of re	port. (Plea	ase refer to
Annexure	- II for suggested field visit.)		

12. Assignment (may be submitted in a group not exceeding three students).

Please refer to Annexure- I for suggested topics for assignment.

Semester VI

Course Code	Course Title	Credits	No. of
BNBUSMB6T1	rDNA Technology, Bioinformatics & Virology	2.5	lectures
 Comprehe Learn med Learn adv 	omes: Learners will be able to: end properties and types of plasmids chanism of transposition ances in and applications of RDT table bioinformatics tools		
Unit I: Plasmids & Transposable elements	 1.1Branches of Genetics (1L) Transmission genetics Molecular genetics Population genetics Quantitative genetics 1.2Model Organisms (2L) Characteristics of a model organism Examples of model organisms used in study Examples of studies undertaken using prokaryotic and eu model organisms 1.3Plasmids (9L) General properties and Types of plasmids Transfer of plasmid DNA Incompatibility Properties of bacterial plasmids (F plasmid, R plasmid, Co Ti plasmid) Plasmids in eukaryotes 1.4 Cloning Vectors: Plasmids as cloning vectors: pUC, la phage replacement vectors, cosmids, YAC, BAC, Express (introduction) 	ol plasmids, mbda	15
	Transposable Elements in Prokaryotes (3L) Insertion sequences Transposons: Types, Structure and properties, Mechanis transposition, Integrons	sm of	
Unit II: Advanced RDT and Bioinforma tics	 2.1 Advanced RDT Genomic, chromosomal and cDNA libraries: definition a construction 3L Southern, Northern and Western hybridization for library Advantages and drawbacks of PCR Vs. hybridization for 2.2 Bioinformatics Introduction Definition, aims, tasks and applications of Bioinformatics (Database, tools and their uses – Importance, Types and clas of databases (01) Intro to Nucleic acid sequence databases- EMBL, DDBJ, GenBank, GSDB, Ensembl. (01) Intro to Protein sequence databases-PIR, SWISS-PROT, NRL3D. 	y screening screening (01) sification	15

	Intro to Protein structure databases- SCOP, CATH, Secondary	
	databases:	
	PROSITE, PRINTS and BLOCKS. KEGG. (01)	
	Intro to Sequence alignment - global v/s local alignment, FASTA, BLAST (Different types of BLAST) (04)	
Unit III: Applications of recombinant DNA technology	 3.1 DNA polymorphism: SNPs, STRS and VNTRS 1L DNA typing 1L DNA molecular testing for human genetic diseases (RFLP): SCA 1L DNA microarrays (only introduction) 1L Gene therapy 1L, Production of human insulin 1L Genetic engineering of plants: methodology (Ti plasmid vectors, electroporation, gene gun) and applications (only enlist- as per Russel) 6L Genetic engineering of animals- methodology (microinjection), applications- TG livestock: production of pharmaceuticals in milk-Pharming 3L 	15
Unit IV: Virology	 4.1 Viral classification (Baltimore classification) Concept of satellite and helper viruses, largest virus Mimi virus 4.2 Structure of, Influenza virus, HIV, Rabies. Life cycle of, Influenza Virus and HIV, Rabies in detail. 4.3 Cultivation of viruses- cell culture techniques, embryonated egg, laboratory animals, Cell culture methods: Equipment required for animal cell culture, Isolation of animal tissue 4.4 Visualization and enumeration of virus particles 4.3.1.1 Plaque assay 4.3.1.2 Fluorescent focus assay 4.3.1.3 Infectious center assay 4.3.1.4 Transformation assay 4.3.2.1 Electron microscopy 4.3.2.2 Atomic force microscopy 4.3.2.3 Haemagglutination 4.3.2.4 Measurement of virul enzyme activity 4.5 Role of viruses in cancer: Important definitions, characteristics of cancer cell, Human DNA tumor viruses- EBV, Kaposi's sarcoma virus, Hepatitis B and C virus, HPV 	15

Course Code	Course Title	Credits	No. of
BNBUSMB6T2	Medical Microbiology and Immunology II	2.5	lectures
 Understand treatment a Enlist com Represent j Comprehen Unit I:	nes: Learners will be able to: characteristics of etiological agent, transmission, pathogen nd prevention of infectious diseases. mon antibiotics and its mode of action pathways of T cell activation and describe B cell activation ad immunohematology, immunodeficiencies and hypersens Study of Diseases with Emphasis on Cultural Characteristics of the Etiological Agent, Pa Laboratory, Diagnosis and Prevention. 1. Study of vector-borne infections - Malaria 2. Study of sexually transmitted infectious dis	sitivity reaction	
Sexually transmitted diseases and infections of CN	 a. Syphilis b. AIDS c. Gonorrhoea 3. Study of central nervous system infectious of a. Tetanus b. Polio c. Meningococcal meningitis 	diseases	15
Unit II: Chemotherapy o infectious agent	Carbapenems) Cell Membrane (Polymyxin and Imidazole) Protein Synthesis (Streptomycin, Tetracycline Chloramphenicol)	ration, LD50, ephalosporins, e and l, fungal and anys and origin ates by Kirby-	15

Unit III:	T cell activationTCR mediated signaling – OverviewCostimulatory signalsSuperantigens induced T cell activationT cell differentiation:formation of Memory and Effector cellsCell mediated effector responseGeneral properties of effector T cells• Cytotoxic T cells and destruction of target cell : perforin/ granzyme pathway• Fas pathwayKilling mechanism of NK cellsAntibody mediated cell cytotoxicity (ADCC)B cell activation B cell activation by Thymus dependant and independent antigens Signal transduction pathway activated by BCR- overview Role T _H cell in B cell response-Formation of T-B conjugates, CD40/CD40L interaction, T _H cells cytokine signals Affinity maturation, somatic hyper-mutation and class switchingDifferentiation: Generation of plasma cells and memory cells Humoral Response: Primary and secondary responses In-vivo sites for induction of Humoral response Germinal centers and antigen induced B cell Differentiation Cellular events within germinal centers- Overview	15
Unit IV:	Immunohaematology: (3)ABO Blood grouping, HDN its detection by Coomb's testVaccines : (7)Introduction, properties of ideal vaccine,Active and passive immunizationTypes: Killed, attenuated, subunit vaccines, recombinant vectorvaccine, DNA vaccineVaccination schedule in IndiaModern vaccine delivery systemsChallenges in vaccine development (HIV, Maleria)Hypersenstivity (3)Gell and Coombs classification, Features of different types ofhypersensitivityImmunodeficiency (2)Inheited defects in early hematopoiesis, overview of SCID	15

Course Code BNBUSMB6T3	Course Title Microbial Biochemistry II	Credits 2.5	No. of lectures
Learning Outco 1. Descr 2. Comp 3. Know 4. Under	Improvide the state of the	2.5	
Unit I: Lipid Metabolism & Catabolism of Hydrocarbons	Common phosphoglycerides in bacteria Action of lipases on triglycerides /tripalmitate Catabolism of Fatty Acids and PHB Oxidation of saturated fatty acid by β oxidation pathway Energetics of β oxidation of Palmitic acid Oxidation of propionyl CoA by acrylyl- CoA pathway an methylcitrate pathway PHB as a food reserve and its degradation Anabolism of Fatty Acids & Lipids Biosynthesis of straight chain even carbon saturated fatty (palmitic acid) Biosynthesis of phosphoglycerides in bacteria Biosynthesis of PHB Catabolism of aliphatic hydrocarbons Organisms degrading aliphatic hydrocarbons Hydrocarbon uptake mechanisms Omega oxidation pathway- Pathway in <i>Corynebacterium</i> and yeast Pathway in <i>Pseudomonas</i>		15
Unit II: Metabolism of Proteins and Nucleic Acids	 2.1 Protein / amino acid catabolism (3) 2.1.1 Enzymatic degradation of proteins 2.1.2 General reactions of amino acids catalysed by 2.1.2.1 Amino acid decarboxylases 2.1.2.2 Amino acid deaminases 2.1.2.3 Amino acid transaminases 2.1.2.4 Amino acid racemases 2.1.3 Metabolic fate of amino acids - Glucogenic and amino acids 2.1.4 Fermentation of single amino acid - Glutamic a <i>Clostridium tetanomorphum</i> 2.1.5 Fermentation of pair of amino acids -Stickland (include enzymes) 2.1.6 Incorporation & Detoxification of Ammonia 	cid by	15

	2.1.7 Nitrogen excretion & urea cycle	
	2.2 Anabolism of amino acids (3)	
	2.2.1 Schematic representation of amino acid families	
	2.2.2 Overview of amino acid biosynthesis (Lehninger fig 22.11)	
	2.2.3 Biosynthesis of amino acids of Serine family (Serine,	
	Glycine and Cysteine)	
	2.2.4 Biosynthesis of Phenylalanine, Tyrosine & Tryptophan from Chorismate	
	2.3 Catabolism of Nucleotides (5)	
	2.3.1 Degradation of purine nucleotides up to uric acid formation	
	2.3.2 Salvage pathway for purine and pyrimidine nucleotides	
	2.4 Biosynthesis of nucleotides (4)	
	2.4.1 Nomenclature and structure of nucleotides	
	2.4.3 Biosynthesis of pyrimidine nucleotides	
	2.4.4 Biosynthesis of purine nucleotides	
	2.4.5 Biosynthesis of deoxyribonucleotides	
	3.1 Definition of terms and major modes of regulation (2)	
	3.2 Regulation of enzyme activity (5)	
	3.2.1 Noncovalent enzyme inhibition	
	3.2.1.1 Allosteric enzymes and feedback inhibition	
	(Allosteric regulation of isoleucine biosynthesis)	
	3.2.1.2 Patterns of FBI, combined activation and inhibition	
	(FBI in the biosynthesis of adenine and guanine nucleotides	
	in E. coli)	
	3.2.2 Covalent modification of enzymes (2)	
	3.2.2.1 Monocyclic cascades	
Unit III:	3.2.2.2 Examples of covalent modification (without structures)	
Metabolic	3.2.2.3 Regulation of Glutamine synthetase	15
	3.3 DNA binding proteins and regulation of transcription by positive	10
Regulation	& negative control (3)	
	3.3.1 DNA binding proteins	
	3.3.2 Negative control of transcription: Repression and Induction	
	3.3.3 Positive control of transcription: Maltose catabolism in <i>E. coli</i>	
	3.4 Global regulatory mechanisms (2)	
	3.4.1 Global control & catabolite repression	
	3.4.2 Stringent response	
	3.5 Regulation of EMP and TCA cycle - (Schematic and Regulation of	
	Pyruvate dehydrogenase Complex) (1)	

	1 Dhotogymthogia	[]
	1. Photosynthesis	
	a. Definition of terms in photosynthesis (light and dark reactions,	
	Hill	
	reaction & amp; reagent, Photophosphorylation)	
	b. Photosynthetic pigments	
	c. Location of photochemical apparatus	
	d. Photochemical generation of reductant	
	2. Light reactions in:	
	a. Purple photosynthetic bacteria	
	b. Green sulphur bacteria	
	c. Cyanobacteria (with details)	
Unit IV:	3. Dark reaction	
Prokaryotic	a. Calvin Benson cycle	
Photosynthesis	b. Reductive TCA cycle	15
& Inorganic	4. Inorganic Metabolism	
Metabolism	a. Assimilatory pathways:	
	\Box Assimilation of nitrate,	
	□ Ammonia fixation– Glutamate dehydrogenase, Glutamine	
	synthetase, GS-GOGAT,	
	Biological nitrogen fixation (Mechanism for N 2 fixation and	
	protection of nitrogenase)	
	\square b. Dissimilatory pathways:	
	□ Nitrate as an electron acceptor (Denitrification in Paracoccus	
	denitrificans) b. Dissimilatory pathways:	
	5. Lithotrophy–Enlist organisms and products formed during	
	oxidation of Hydrogen, carbon monoxide, Ammonia, Nitrite,	
	Sulphur, Iron.	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Course Code BNBUSMB6T4	Course Title Bioprocess Technology: II	Credits 2.5	No. of lectures
<ol> <li>Understan process contr</li> <li>know basic</li> <li>Learn the s</li> </ol>	es: Learners will be able to: d applications of ultracentrifugation, spectrophotometer a ol e protocols and applications of ATC and PTC salient features of quality management and regulatory proc arious aspects of fermentation of penicillin, streptomycin	cedures.	
Unit I: Instrumentation and process contro	<ul> <li>1.1 Ultra centrifuge and its application (1)</li> <li>1.2 Spectrophotometer: Principles, working and applicate Spectrophotometry: UV, Visible &amp; IR, nanodrop AAS &amp; AES (Flame photometry)</li> <li>1.3 Computer control of fermentation processes (7) Principal operating characteristics of fermenters (1) Common measured and controlled parameters Instrumentation and interfacing technique Computer applications in automation, control strate analysis, fermentation research (4)</li> <li>1.4 Microfluidic devices in bioprocess (3) introduct significance</li> </ul>	tegies fault	15
Unit II: Animal and Plant Tissue Culture	<ul> <li>2.1 Animal Tissue Culture: (9L) Introduction &amp; types Design of ATC laboratory :1 Enlisting and significance of Glassware, plastiequipment for ATC: 1 Sterilization protocol: 1 Tissue Culture media: 1 Culture of cell lines: 3 (Setting up, maintenance, cryopreservation) Applications :3</li> <li>2.2 Plant Tissue Culture: (6L) Introduction PTC media :1 Techniques in plant tissue culture: 3</li> <li>Sterilization procedure</li> <li>Preparation of aseptic plants</li> <li>Aseptic techniques</li> <li>Incubation of culture</li> <li>Callus culture Applications: 2</li> </ul>	icware and	15
Unit III: OA, OC and Assay	<ul> <li>3.1 Quality assurance and Quality control (5L)</li> <li>3.1.1 Definitions, Chemical and pharmaceutical products</li> <li>s.1.2 Variables of batch process</li> </ul>	3	15

	<ul> <li>3.1.3 Q.A and Q.C wrt Raw materials, method of manufacturing, in process items, finished products, label and labeling, packaging materials</li> <li>3.1.4 Control of microbial contamination during manufacturing -</li> <li><b>3.2 Sterilization control and assurance</b> (3L)</li> <li><b>3.4 Bioassay</b> (5L)</li> <li>3.4.1 Introduction</li> <li>3.4.2 Types: Diffusion, End Point, Turbidometric, Metabolic Response, Enzymatic.</li> </ul>	
Unit IV: Industrial Fermentations	<ul> <li>Penicillin and semisynthetic penicillins: Introduction, strain development, production methods. Semisynthetic penicillins: Examples, production, advantages. (Crueger 233-240)</li> <li>Aminoglycoside: Streptomycin: Aminoglycoside antibiotics, strain development, production method, recovery. (Crueger 250-256)</li> <li>Vitamin B ₁₂: Occurrence and economic significance, structure, biosynthesis, production based on media containing carbohydrates by- <i>Propionibacteria</i> and <i>Pseudomonas</i>, recovery. (Crueger 219-222)</li> <li>Citric acid: Introduction, strains used for production, , nutrient media, production processes- surface and submerged, product recovery. (Cruger 134-142)</li> <li>Glutamic acid: Production strains, effect of permeability on production, conditions of manufacturing, production process and recovery. (Crueger 158-164.)</li> <li>Mushroom cultivation (Agaricus): Edible mushroom species, preparation of substrate- composting- phase I and phase II, Factors affecting composting, preparation of spawn, casing, induction of fruiting body formation, harvesting. (Peppler Volume II- 179 – 196; An introduction to industrial microbiology. P.K Sivakumar. S. Chand. 156- 159.</li> </ul>	15

Course Code BNBUSMB6T5	Course Title C Environmental Management	Credits 2.5	No. of lectures
<ul> <li>1. study and effluents.</li> <li>develop apt hotspots, bid</li> <li>relate the image.</li> </ul>	<b>tes:</b> Learners will be able to: I comprehend the treatment practices applied for domestic waste itude to examine and assess the outcome of the framework of osphere reserves and ecotourism. pacts of climate change to the environment. ite environmental auditing.		
UNIT I Ecological Restoration	<ul> <li>1.1 Domestic wastewater treatment.</li> <li>1.2 Effluent treatment of Industrial waste.</li> <li>1.3 Bioremediation.</li> <li>1.4 Alternatives to conventional resources: biodegradable plastic biodiesel, bio ethanol biopesticides.</li> <li>1.5 Developing effluent treatments.</li> <li>Case study: Maharashtra Nature Park Society, Sion</li> </ul>	c,	15
UNIT II Biodiversity Conservation and Ecotourism	<ul> <li>2.1 Hotspots of biodiversity and biosphere reserve.</li> <li>2.2 Strategies for biodiversity conservation (in-situ and ex-situ).</li> <li>2.3 Commercial wildlife photography.</li> <li>2.4 Ecotourism-definition, policies and practices.</li> <li>2.5 Eco sensitive zones of Thane Creek Flamingo</li> <li>Case study Tungareshwar Wildlife Sanctuary (TWLS) and Tans</li> <li>Wildlife Sanctuary (TWS), Sanjay Gandhi National Park Boriva</li> <li>Aarey forest, Mumbai.</li> </ul>	sa	15
UNIT III Climate Change	<ul> <li>3.5 The National Action Plan on Climate Change (NAPCC), Par Agreement</li> <li>3.6 Role of Ministry of Environment, Forests &amp; Climate Change</li> </ul>	& UN rris	
UNIT IV Environmental Audit	<ul> <li>4.1 Concept &amp; economics of pollution control.</li> <li>4.2 Concept, Objective and Scope of environmental audit.</li> <li>4.3 Types of environmental audit</li> <li>4.4 Green Audit Methodology</li> <li>4.5 Benefits of environmental auditing.</li> </ul>		

Course Code BNBUSMB6P1	Course Title Practical Based on BNBUSMB6T1 & BNBUSMB6T2Credits 3			
1.	Enrichment of coliphages, phage assay (pilot & quantitative ).			
2.	Restriction digestion of lambda phage /any plasmid DNA (Dem	0)		
3.	Restriction digestion of lambda phage /any plasmid DNA (Dem	o)		
4.	Beta galactosidase assay			
5.	Bioinformatics practicals: Visiting NCBI and EMBL websites & list services available, software tools availableand databases maintained, Visiting & exploring various databases mentioned in syllabus and Using BLAST and FASTA for sequence analysis, six frame translation of nucleotide sequence, restriction analysis of given nucleotide sequence, pairwise and multiple alignment of protein sequence, phylogenetic tree building			
6.	Animal cell culture (Demo) Primary explant culture Cell culture processing Trypsinization Determination of cell viability Cryopreservation protocol			
7.	Demonstration of malarial parasite in blood films (Demo)			
8.	Determination of MIC and MBC of an antibiotic.			
9.	Selection and testing of antibiotics using the Kirby-Bauer method			
10.	Synergistic activity determination			
11.	Blood grouping – Direct & Reverse typing			
12.	Determination of Isoagglutinin titer			
13.	Coombs Direct test			
14.	Demonstration : VDRL			

Course Code BNBUSMB6P2	Course TitleCreditsPractical Based on BNBUSMB6T33& BNBUSMB6T43				
1.	Detection of PHB producing bacteria				
2.	To study catabolite repression by diauxic growth curve				
3.	Protein estimation by Lowry's method				
4.	Estimation of uric acid				
5.	Qualitative and Quantitative assay of Protease				
6.	Qualitative detection of Lipase				
7.					
8.	Study of Lithotrophs – Nitrosification and Nitrification				
9.	Bioassay of an antibiotic (Ampicillin / Penicillin)				
10.	Bioassay of Cyanocobalamin				
11.	Plant tissue culture – preparation of medium, preparation of Explant, Callus culture (Demo)				
12.	Sterility testing of injectable				
13.	Bioassay of Penicillin				
14.	Vit B12 Bioassay				
15.	Stoke's method				
16.	Validation and Calibration of Instruments				
17.	17.   Estimation of phenol				
18.	Chemical estimation of Penicillin				
19.	Industrial Visit				

Course Code BNBUSMB6P3	Course Title Practical based on: BNBUSMB6T5	Credits 3	No. of lectures
students) (Please	ssion of report (Project report may be submitted in a group not ex refer to Annexure- III for suggested project.) nysical properties of soil: pH, Temperature, moisture, & texture of	-	ree
2. Study of cl	nemical properties of soil: Organic matter		
3. Estimation	of calcium carbonate from soil.		
4. Population	analysis by Quadrant method & Line transect method.		
5. Observatio	n & study of indicator species.		
6. Study of ai	r & noise pollution monitoring devices, geospatial instruments.		
7. Study of a	ny five biodiversity hotspots, bio reserves of India.		
8. Study of b	odegradable plastic products, biopesticides brands.		
9. To make e	co-friendly products (colors, bags, lanterns, idols).		
10. Demonstra	te effects of global warming using jar experiment.		
Visit to any indust II for suggested f	ry/laboratory/plant/national park and submission of report. (Pleas ield visit.)	se refer to	Annexure-

# **References:**

#### **SEMESTER-V**

## **BNBUSMB5T1:**

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Genetics: A Conceptual Approach	Benjamin A. Pierce	WH Freeman	3 rd	2007
2.	iGenetics: A Molecular Approach	Peter Russel	Benjamin Cummings	3 rd	2010
3.	Fundamental bacterial genetics	Trun & Trempy	Wiley- Blackwell	-	2004
4.	Microbiology- an evolving science	John W. Foster, Joan L. Slonczewski	W. W. Norton & company Ltd.	International student edition 4e	2017

### **BNBUSMB5T2:**

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Textbook of Microbiology	Textbook of Microbiology	Textbook of Microbiology	Textbook of Microbiology	Textbook of Microbiology
2.	Jawetz's Medical Microbiology	Karen C. Carroll	McGraw Hill	26th	2013
3.	Mims' Medical Microbiology and Immunology	Richard V. Goering, Mark Zuckerman	Elsevier	6th	2018
4.	Kuby Immunology, 1.	W H Freeman		6 th Edition	
5.	Immunology: Essential & Fundamental	Pathak & Palan,	Capital publishing	, 1 st & 3 rd edition,	

### **BNBUSMB5T3:**

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	General Microbiology	Stanier, R. Y., M. Doudoroff and E. A.	The Macmillan press Ltd	<b>`</b>	General Microbiology

		Adelberg			
2.	Outlines of Biochemistry	Conn, E.E., P. K .Stumpf, G. Bruening and R. Y. Doi	John Wiley & Sons. New York	5 th	Outlines of Biochemistry
3.	Bacterial Metabolism	Gottschalk,G	Springer Verlag	2 nd	Bacterial Metabolism
4.	The Physiology and Biochemistry of Prokaryotes	White, D	Oxford University Press	3 rd	The Physiology and Biochemistry of Prokaryotes
5.	Lehninger, Principles of biochemistry	Nelson, D. L. and M.M. Cox	W. H. Freeman and Company	4 th	Lehninger, Principles of biochemistry
6.	Chemical Microbiology	Rose, A.H	Butterworth- Heinemann	3 rd	Chemical Microbiology
7.	Biochemistry	Mathews, C.K., K.E. van Holde, D.R. Appling, S, J, Anthony- Cahill	Pearson	$4^{\mathrm{th}}$	Biochemistry
8.	Biochemistry	Zubay, G. L	Brown publishers	4 th	Biochemistry

# **BNBUSMB5T4:**

Sr. No.	Title	Author/s	Publisher	Edition	Year
2.	Research Methodology	C R Kothari	New Age International Publishers	2 nd	2004
3.	Entrepreneurship & Business of Biotechnology	S N Jogdand	Himalaya Publishing House	$1^{st}$	2007
4.	Writing Scientific Research	Margaret Cargill & Patrick	John Wiley &	$1^{st}$	2009

	Articles: Strategy & Steps	O'Connor	Sons		
5.	Successful Scientific Writing	J Matthews & R Matthews	Cambridge University Press	3 rd	2008
6.	A complete guide to referencing and avoiding plagiarism	Colin Neville	McGraw Hill	$1^{st}$	2007
7.	Microbiology and Technology of fermented foods.	Robert Hutkins	Wiley publications.	2 nd edition	
8.	Modern Industrial Microbiology and Biotechnology'	Okafor Nduka	Science Publications Enfield, NH, USA		(2007)
9.	Industrial Microbiology	Prescott and Dunn	McMillan Publishers.	4th edition,	1982
10.	Industrial Microbiology"	Casida L. E.,	Reprint, New Age International (P) Ltd, Publishers, New Delhi		2009
11.	Biotechnology -"A Textbook of Industrial.	Crueger W. and Crueger A.			2000

# **SEMESTER-VI**

#### **BNBUSMB6T1:**

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Genetics: A Conceptual Approach	Benjamin A. Pierce	WH Freeman	3 rd	2007
2.	iGenetics: A Molecular Approach	Peter Russel	Benjamin Cummings	3 rd	2010
3.	Molecular Biology	David Friefelder	Narosa Publishing House	2 nd	2004

4.	Principles of Gene Manipulation and Genomics	S.B. Primrose	Wiley Blackwell	$7^{\mathrm{th}}$	2013
5.	Basic Bioinformatics	S. Ignacimuthu	Narosa Publishing House	2 nd	2012
8.	Understanding Viruses	Teri Shors	Jones & Bartlett Learning	2nd	-
9.	Principles of Virology	Flint, Racaniello, Rall, Skalka, Enquist	ASM Press	4th	2015

### **BNBUSMB6T2:**

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Jawetz, Melnick and Adelberg's Medical Microbiology.	G.F.Brooks, Morse, Carroll, Mietzner, Butel.	Lange publication	26th	2013
2.	Goering, MarkIim's Medical Microbiology.Goering, Mark Zuckerman, Dockrell, chiodiniElsevier limited6th		6th	2019	
3.	Kuby Immunology, 2.	W H Freeman		$6^{th}$	
4.	Immunology: Essential & Fundamental	Pathak & Palan,	Capital publishing	2nd	2005
5.	Textbook of basic and clinical immunology	Sudha gangal and Shubhangi Sontakke	Universities press		2013

# BNBUSMB6T3:

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Principles of Biochemistry	Lehninger	W.H. Freeman & Company	$6^{th}$	2013
2.	Textbook of Biochemistry for Medical Students	D M Vasudevan, Sreekumari S, Kannan Vaidyanathan	Jaypee Brothers Medical Publishers	9 th	2019

3.	General Microbiology	Stanier, R. Y., M. Doudoroff and E. A. Adelberg	The Macmillan press Ltd	5 th	2004
4.	Outlines of Biochemistry	Conn, E.E., P. K .Stumpf, G. Bruening and R. Y. Doi	John Wiley & Sons. New York	5 th	1987
5.	Bacterial Metabolism	Gottschalk,G	Springer Verlag	$2^{nd}$	1985
6.	The Physiology and Biochemistry of Prokaryotes	White, D	Oxford University Press	3 rd	1995
7.	Lehninger, Principles of biochemistry	Nelson, D. L. and M.M. Cox	W. H. Freeman and Company	$4^{th}$	2005

# **BNBUSMB6T4:**

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Principles of fermentation technology	P.F. Stanbury, A. Whitaker, S.J. Hall.	Butterworth Heinemann, oxford	2 nd edition	2000
2.	Principle and Practice of Animal Tissue Culture	Sudha Gangal	University Press	2 nd	2010
3.	Introduction to Plant Tissue Culture	M.K. Razdan	Oxford and IBH Publishing	2 nd	2019
4.	Plant Tissue Culture	Kalyan Kumar De	New Central Book Agency	-	2008
5.	Principle and Practice of Animal Tissue Culture	Sudha Gangal	University Press	2 nd	2010
6.	Biophysical Chemistry: Principles and Techniques	Upadhyay and Upadhyay Nath	Himalaya Publishing House	4 th Ed	2014
7.	Hermentation Lechnology H A Modi		Pointer Publications	8 th Ed	2009
8.	Modern Industrial Microbiology and	Okafor Nduka	Science publications	_	2007

	Biotechnology		USA	
9.	An introduction to industrial microbiology	P.K Sivakumar	S. Chand	
10.	Microbial Technology''. Vol. 1 & 2	Peppler, H. J. and Perlman,	Academic Press.	(1979
11	"Biotechnology -"A Textbook of Industrial.	Crueger W. and Crueger A.		2000
12	Industrial Microbiology	A.H. Patel	McMillan India	2007
13	Bioprocess microfluidics: applying microfluidic devices for bioprocessing https://doi.org/10.1016/j.coche.2 017.09.004	Marco PC Marques and Nicolas Szita	Available online at www.sciencedi rect.co	2017

#### **References and Additional Reading USACEVS501 & USACEVS601**

1) A Text Book in Environmental Science, V. Subramanian, Narosa Publishing House. 2002.

2) An Advanced Textbook on Biodiversity, K.V. Krishnamurthy, Oxford & IBH Publishing Co. Pvt. Ltd. 2009.

3) Atmosphere, Weather & Climate, R.G. Barry & R.I. Charley, ELBS 1982.

4) Bioresource Ecology, T. N. Anatha krishnan, Oxford & IBM Publishing Company, New Delhi 1982.

5) Concepts of Ecology, E. J. Kormandy, Prentice Hall of India (Pvt.) Ltd.

6) Ecological Methods of Field & Laboratory Investigations, P. Michael, Tata Mc Graw Hill.

 7) Ecology & Quality of our Environment, Charles H. Southwid, D. Van Nostrand Co. N.Y. 1976.

8) Ecotourism, Ecorestoration& Development, Solomon Raju, New Central book agency, 2007.

9) Environment, e-book, Shankar A.G.

10) Wildlife photography- Advanced field techniques for amazing images, Classen, Joe.

11) Environmental Biology, P.D. Sharma, Rastogi Publications 1996.

12) Environmental, Chemical & Biological Analysis, H.V. Jadhav & S.N. Jogdand, Himalaya Publishing House.

13) Environmental Impact Assessment Methodologies, Anjaneyulu Y., B.S Publication, Hyderabad. 2002.

14) Environmental Management, Khitolia, Chand Publications.

15) Environmental Management. Environmental Engineering Series; Vijay Kulkarni &T. V. Ramchandra, Publ. Commonwealth of Learning, Indian Institute of Science(IISC), Bangalore. 2011.

16) Environmental Pollution & Health Hazards in India, R. Kumar, Abhish Publ. House, New Delhi 1987. 17) Environmental Pollution & Management, Pramod Singh, Chugh Publ. Allahabad 1985.

18) Environmental Science Ahluwalia V.K. & Malhotra Sunita:. Ane Books India 2006. 19)Environmental Science, J. Turk, A. Turk & K. Arms, Saunders College Publishing 1983.

20) Environmental Science, S.C. Santra, New Central Book Agency (P) Ltd. 2001.

21) Environmental Science – Earth as living Planet, Daniel Botkin & Edward Kellere, J.Wiley & Sons 1995.

22) Environmental Studies, Sharma Narendra, Prashant Publications.

23) Environmental Studies: From crisis to cure, Rajagopalan R., Oxford Higher Education.

24) Fundamentals of Ecology, E. P. Odum, W.B. Saunders Company.

25) Global Environmental Issues – A Climatological Approach, David D. Kemp, Roult Ledge & Company, London & N. Y. 1990.

26) Indicator of Environmental Quality, Williams A. Thomas, Plenum Press, N.Y. & London 1971.

27) Industrial Hygiene & Chemical Safety, Fulekar .M.H., I. K. International Pvt Ltd, 2006.

28) Introduction to Climatology for the Tropics, J.O. Ayoade, J. Wiley & Sons 1983.

29) Management of Municipal solid waste; Environmental Engineering Series, T. V. Ramchandra, Publ.Common wealth of Learning, Indian Institute of Science (IISCBangalore.2011.

30) Pollution Control in Process Industries, S.P. Mahajan, TMH 1988.

31) Practical Methods in Ecology & Environmental Science, Trivedi, Goel & Trisal, Environmental Publications, Karad 1987.

32) Text book of Environmental Chemistry & Pollution Control. Revised edition,Dara S.S. & Mishra D.D.,S. Chand Publications.

33) Waste Water Treatment for Pollution Control, Soli J. Arcivala, TMH 1986.

34) Water & Water Pollution Handbook, L.L. Caccio, Marcel Dekker Inc. N.Y. 1971.

35) https://www.un.org/en/climatechange/cop26

36) https://dst.gov.in/sites/default/files/NMSKCC_mission%20document%201.pdf

### **Evaluation Scheme**

### Internals:

Class test	Assignment/ Study tour with report/Journal Movie club presentation/ Presentation of mini-research project work/ volunteering for Department fest/ poster making/ exhibition/ Departmental contribution/ case study presentation/Review writing	Attendance, Active Participation and Leadership Qualities	Total
20	10	10	40

### Internal Examination: Based on Unit 1 / Unit 2 / Unit 3 / Unit 4

Duration: 40 mins Total Marks: 20

No. of Questions: 15

Q.1	Ans	nswer the following choosing the correct alternative.							10
	1	Based on U	nit I	/ II / III/ IV					
	a		b		С	d	1		
	2	Based on U	nit I	/ II / III/ IV					
	Α		b		С	d	1		
	3	Based on U	nit I	/ II / III/ IV					
	А		b		С	d	1		
	4	Based on U	nit I	/ II / III/ IV					
	Α		b		С	d	1		
	5	Based on U	nit I	/ II / III/ IV					
	Α		b		С	d	1		
	6	Based on U	nit I	/ II / III/ IV					
	Α		b		С	d	1		
	7	Based on U	nit I	/ II / III/ IV					
	А		b		С	d	1		
	8	Based on U	nit I	/ II / III/ IV					
	А		b		С	d	1		
	9	Based on U	nit I	/ II / III/ IV					
	Α		b		С	d	1		
	10	Based on U	nit I	/ II / III/ IV					
	Α		b		С	d	1		
Q.2	Ans	swer the foll	owin	g choosing the cor	rect a	lternative.			10
	1	Based on U	nit I	/ II / III/ IV					
	Α		b		С	d	1		

2	Based on Unit I	Based on Unit I / II / III/ IV						
Α	b	C		d				
3	Based on Unit I	/ II / III/ IV						
Α	b	C		d				
4	Based on Unit I	/ II / III/ IV						
Α	b	C		d				
5	Based on Unit I	Based on Unit I / II / III/ IV						
A	b	C		D				

# Theory Examination: Suggested Format of Question paper

### Duration: 2 Hours Total Marks: 60

All questions are compulsory

Q. 1	An	nswer any two of the following	12	
	A	Based on Unit I		
	В	Based on Unit I		
	C	Based on Unit I		
	D	Based on Unit I		
			·	
Q. 2	Answer any two of the following			
	A			
	В	Based on Unit II		
	C	Based on Unit II		
	D	Based on Unit II		
	1		I	
Q. 3	An	nswer any two of the following	12	
	A	Based on Unit III		
	В	Based on Unit III		
	C	Based on Unit III		
	D	Based on Unit III		
	<u> </u>			

Q. 4	Ar	swer any two of the following	12
	A	Based on Unit IV	
	В	Based on Unit IV	
	C	Based on Unit IV	
	D	Based on Unit IV	
Q. 5	Ar	swer any six of the following	12
	a	Based on Unit I	
	b	Based on Unit I	
	c	Based on Unit I	
	d	Based on Unit II	
	e	Based on Unit II	
	f	Based on Unit II	
	g	Based on Unit III	
	h	Based on Unit III	
	i	Based on Unit III	
	j	Based on Unit IV	
	k	Based on Unit IV	
	1	Based on Unit IV	

For Applied component Refer to Environment Science Syllabus that would involve BNBUSMB5T5 theory and BNBUSMB5P3 practical for semester 5

And

BNBUSMB6T5 theory and BNBUSMB6P3 practical for semester 6

# Marks Distribution and Passing Criterion for Each Semester

	Theory						Practical		
Course Code	e Inter Min nal for passing		Theory Examinatio n	Min marks for passin g	Course Code	Practical Examinatio n	Min marks for passing		
BNBUSMB5T1	40	16	60	24	BNBUSMBT 5P1	100	40		
BNBUSMB5T2	40	16	60	24	JPT				
BNBUSMB5T3	40	16	60	24	BNBUSMB5	100	40		
BNBUSMB5T4	40	16	60	24	P2				
BNBUSMB5T5	40	16	60	24	BNBUSMB5 P3	100	40		

Theory					Practical		
Course Code	Internal	Min marks for passing	Theory Examination	Min marks for passin g	Course Code	Practical Examina tion	Min marks for passing
BNBUSMB6T1	40	16	60	24	BNBUSMB6P1	100	40
BNBUSMB6T2	40	16	60	24			
BNBUSMB6T3	40	16	60	24	BNBUSMB6P2	100	40
BNBUSMB6T4	40	16	60	24	3		
BNBUSMB6T5	40	16	60	24	BNBUSMB6P3	100	40

********

### ANNEXURES

### Annexure I: Suggested topics for assignment USACEVS5P1

(Teachers are expected to develop additional innovative topics, varying every year, to be assigned to the students).

1. List out the instruments or funding agencies or permits required for setting up an environment testing laboratory.

2. Survey of NGO's working in the environmental field in your area.

3. Preparation of proposal for green building and sustainable development.

4. Prepare a cost sheet for setting up a biodegradable plastic unit.

5. Make an inventory of the water bodies presently existing/which existed in the urban/rural area of about 5kms. 6. Find out information regarding pollution testing booths that the Government proposes to set up. (List out the personnel who will man the booths and the indigenous equipment that these booths will have).

7. Make a report on amenities, trees, dimensions of open spaces in your locality. Assess their role in maintaining the ecological balance in the region.

8. Survey housing societies/institutions/organizations to find out whether they are converting household/kitchen waste into anything utilizable like vermicomposting etc.

9. Meet entrepreneurs involved with manufacture of eco-friendly products/best out of waste etc. Make a report regarding how the entrepreneur decided to pursue such an initiative, its need, the process and benefits to the environment.

10.Calculate the carbon footprint of your family/class-room or laboratory/housing society by visiting the appropriate site on the internet.

11.Visit architectural /horticulturist firms that deal with vertical gardening /urban farming and prepare a first-hand report on the concept, where implemented and the advantages.

All topics mentioned above are suggestive, more creative and innovative topics are expected from the students, under the able guidance of the concerned teacher, to suit the expertise, human resources, infrastructure and local needs as also the interest of the students. The assignment may be submitted in a group not exceeding three students.

### Annexure II: Suggested Field Visits USACEVS5P1 and USACEVS6P1

There shall be various short and long excursions / study tours / field visits / industrial visits in every semester, at least one of which shall be financially affordable to every student in the class; and that assessment and marks of field trips shall be solely based upon such where no student was restrained for financial limitations.

• Field visits are to be organized to facilitate students to have firsthand experience & exposure to technology/production/functioning of organization/units or witness a relevant activity.

• Each student must make at least 01 (one) such visit to the units/treatment plants/aquatic or terrestrial habitat organized by the College.

- The list is suggestive and not exhaustive.
- 1. Visit to the Sewage treatment plant.
- 2. Visit to the Vermicomposting unit.
- 3. Visit to the Air Monitoring Laboratory.
- 4. Visit to the Environment Pollution Detecting Laboratory.
- 5. Visit to Cooling towers in industries.
- 6. Visit to RainWater Harvesting System.
- 7. Visit to the Biogas Plant.
- 8. Visit to the Green Building/Ecotel Hotel.
- 9. Visit to the Water Filtration Plant.
- 10. Visit to the office of Pollution Control Board.
- 11.Visit to Greenhouse.
- 12. Visit to Solid Waste Management Plant.
- 13. Visit to hydro/thermal power plants.
- 14. Visit to Environmental Agencies-CITES
- 15. Visit to National Parks, Sanctuaries, Biosphere Reserves etc. in Maharashtra/India/abroad.
- 16. Visit to NEERI. 17. Visit to Enviro Vigil, CSM Hospital Campus, Kalwa (W), Thane.
- 17. Visit to Maharashtra Nature Park, Sion

### Annexure III: Suggested Topics for Projects USACEVS6P1

(Teachers are expected to develop additional innovative topics, varying every year, to be assigned to the students).

1) Effects of anthropogenic activities on different ecosystems; for example, mangroves/ wetlands.

2) Effect of tourism activities on different ecosystems.

3) Assessment of ecotourism potential-SGNP, different sanctuaries.

4) Energy/water audit in your area.

5) Costing, accounting & budgeting of eco-friendly idols during festivals.

6) Costing, accounting & budgeting for paper making from waste.

7) Study the role of microbes in biodegradation of: plastic, pesticides, heavy metals, hydrocarbons, etc.

8) Preparation of feasibility Report of eco-friendly products.

9) Preparation of feasibility report of environment testing laboratory.

10) Preparation of feasibility report for manufacture of any domestic pollution control device.

The project may be submitted in a group not exceeding three students.